SOLAR II

Peter Neubauer www.bluerwhite.org www.advanturetrek.com KansasFest 2012 ACCOUNT AND ADDRESS OF

WHY BOTHER?

- × No utility power available
- Reduce costs of utility power
- Reduce dependency on utility power
- Reduce environmental impact

WHAT ARE THE COMPONENTS?

- 1. List items requiring power
- 2. Estimate power usage
- 3. Estimate hours of usage per day
- 4. Estimate total energy required per day

Maximum power requirements per Apple manuals or labels:

Item	Power (Watts)
Apple //+ CPU	132 W (13 W w/ 48 KB and no peripherals)
Apple //e CPU	80 W (60 W typical)
Apple //c CPU	25 W
Apple //c+ CPU	36 W
Apple IIgs CPU	43 W
AppleColor Composite Monitor	75 W (50 W typical)
Monitor IIc (9")	36 W
Apple Monochrome (12")	45 W (20 W typical)
AppleColor RGB	90 W (65 W typical)

Measured power draw for an Apple //c (ROM FF) with an Apple 9" monochrome monitor:

Item	Power
Power brick alone	2 W
9" monitor	20 W
CPU	12 W typical
CPU + monitor	31 W min / 40 W max

- Power measurements from a comp.sys.apple2 thread started on 4/11/2011:
 - + Apple //e main board only (DC input): 4.2 W
 - + Apple //c: 25 W (May be suspect. Same as maximum rating of brick.)
 - + Apple 9" monitor: 60 W (May be suspect. Exceeds rating printed on monitor.)
 - + Apple //e with monitor, DuoDisk, SSC, and System Saver: 87 W (startup), 72 W (boot), 66 W (idle)
 - + Apple //e with DuoDisk, SSC, and System Saver: 34
 W (startup), 29 W (boot), 24 W (idle)
 - + System Saver //e: 7 W

Item	Power (Watts)	Usage (Hours per Day)	Energy (Watt-Hours per day)
Apple //c CPU	25 W	8 hours/day	200 Wh/day
Apple 9" Monitor	36 W	8 hours/day	288 Wh/day
		Total:	488 Wh/day

SYSTEM DESIGN

- 1. Estimate solar radiation
- 2. Size solar array
- 3. Size battery bank

On average how much energy will your solar array produce?

- National Renewable Energy Laboratory (NREL) Renewable Resource Data Center (http://www.nrel.gov/rredc/pvwatts/)
- Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors (<u>http://rredc.nrel.gov/solar/pubs/redbook/</u>)

$$P_{solar} = \frac{E_{required}}{T_{solar \ hours}} \times \frac{1}{\eta}$$

 P_{solar} : minimum power generation to break even $E_{required}$: energy required $T_{solar\ hours}$: equivalent solar hours per day η : derating factor (conversion efficiency)

- System conversion efficiency varies and may be as low as 50% to 80%.
- × Efficiency depends on:
 - + Nameplate rating (-5% to +5%)
 - + Charge controller losses (1% to 10%)
 - + Inverter losses (8% to 30%)
 - + Battery losses (2% to >25%)
 - + AC and DC wiring losses (3% to 7%)
 - + Angle of incidence (0% to 100%)
 - + Temperature (12%)
 - + Soiling (5% to 15%)
 - + Shading
 - + Age

 $P_{solar} = \frac{488 \,Watt \cdot hours/day}{4.3 \,solar \,hours/day} \times \frac{1}{0.77}$

$= 147.4 Watts \approx 150 W$

(minimum to break even each day)

BATTERY BANK SIZING

- What happens when solar power is insufficient or unavailable?
- How long must stored power last?

Most batteries must not be discharged less than 50%.

BATTERY BANK SIZING

$$Bank \, size(Ah) = \frac{E_{required}}{V_{system}} \times T_{reserve} \times \frac{1}{0.50}$$

$Bank \, size(Ah) = \frac{488 \, Wh/d}{12.6 \, Volts} \times 3 \, days \times \frac{1}{0.50}$ $= 232 \, Amp \cdot hours$

CONSIDERATIONS

- Plan for the minimum and maximum solar radiation (e.g. bad weather, storms, clouds, etc.).
- Plan for temperature variations (both when matching controller to array and when estimating system performance).
- Consider consequences of insufficient power.
- Consider alternative power sources.

REDUCING POWER REQUIREMENTS

- × Replace the CRT
- Remove unused cards or peripherals
- Skip the inverter (run off DC)

